China wholesaler R Series Helical Gear Reducer Variator De Velocidad Gearbox R107 R137 Planetary Gear Boxes manufacturer

Product Description

R Series Helical Gear Electric Motor Speed Reducer with 220V geared motor

 

R Series Rigid Tooth Flank Helical Gear Reducer 

Small size, light weight, large transmission torque, superior performance, stable
operation, low noise, durable, can be installed in a variety of ways, can be matched with different types of motors, a wide range
of applications. Optional vertical flange installation, commonly used in mixing equipment.

Please tell me the ratio, input power and output torque.

I will help you to confirm the specific model.

1,Motor

2,Bolt

3,Washer

4,Lifting ring

5,Cap Screw

6,Vent Cap

7,Cover

8,Sealing shim

9,Parallel Key

10,Output shaft

11,Parallel Key

12,Circlip for hole

13,Skeleton oil seal

14,Gear

15,Bearing sleeve

16,Bear

17,Parallel Key

18,Gear

19,Plane Oil Seal

20,Circlip for hole

21,Gear

22,Gear Shaft

23,Plane Oil Seal

24,Circlip for hole

25,Bearing

26,Gear Shaft

27,Parallel Key

28,Bearing

29,Gear

30,Bearing

31,Circlip for hole

32,Bearing sleeve

33,Bearing

34,Bearing

35,Circlip for shaft

36,Plug cock

37,Oil mirror

38,Case

39,Circlip for shaft

40,Gear

 

 

Series:

R Series Helical Gear Reducer

Specifications:

17,27,37,47,57,67,77,87,97,107,137,147,167,177

Transmission Ratio:

1.3~289.74

Input Power (KW):

0.12~160

Output Torque (N.m):

3.5~23200

 

Product Description

 

R Series reducers are designed and manufactured on the basis of modular combination system.
There are a lot of motor combinations, installation forms and structural schemes. The transmission
ratio is classified and fine to meet different operating conditions, and the performance is superior.
Reinforced high rigid cast iron box; The hardened gear is made of high-quality alloy steel. Its surface
is carburized, quenched and hardened, and the gear is finely ground. It has stable transmission, low
noise, and large bearing capacity. Low temperature rise, long service life. It is widely used in metallurgy,

Detailed Photos

 


 

Company Profile

 

Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Type: Gear Reducer

variator gearbox

How do variator gearboxes ensure efficient power transmission and speed regulation?

Variator gearboxes are designed to ensure efficient power transmission and speed regulation through a combination of mechanical principles and control mechanisms. Here’s how they achieve these objectives:

Efficient Power Transmission:

Variator gearboxes employ various mechanisms to ensure efficient power transmission from the input to the output shaft. These mechanisms minimize energy losses and maximize the transfer of mechanical power. Here are a few key factors that contribute to efficient power transmission:

  1. Optimized Gear Design: Variator gearboxes are engineered with carefully designed gear profiles, tooth shapes, and gear ratios. These design elements help to reduce friction, minimize backlash, and improve the meshing efficiency between the gears. By optimizing the gear design, variator gearboxes can achieve higher power transmission efficiency.
  2. High-Quality Bearings: Variator gearboxes utilize high-quality bearings that reduce friction and allow smooth rotation of the gears and shafts. Well-lubricated bearings minimize energy losses due to friction, thereby improving overall power transmission efficiency.
  3. Lubrication Systems: Proper lubrication is essential for efficient power transmission in variator gearboxes. Lubricants reduce friction and wear between moving components, ensuring smooth operation and minimizing energy losses. Variator gearboxes often incorporate dedicated lubrication systems that deliver lubricants to critical areas, optimizing power transmission efficiency and extending the lifespan of the gearbox.
  4. Material Selection: The choice of materials in variator gearboxes plays a significant role in power transmission efficiency. High-strength and low-friction materials are often used for gears, shafts, and other critical components to minimize energy losses through friction and maximize power transfer.
  5. Minimization of Internal Losses: Variator gearboxes are designed to minimize internal losses caused by factors such as windage, churning, and fluid flow resistance. Streamlined housing designs, efficient cooling systems, and optimized fluid dynamics within the gearbox contribute to reducing these losses, resulting in improved power transmission efficiency.

Speed Regulation:

Variator gearboxes excel in speed regulation by providing precise and adjustable speed control according to the requirements of the application. The following features enable accurate speed regulation:

  1. Continuous Adjustment: Variator gearboxes offer continuous and stepless adjustment of the gear ratio or speed control mechanism. This allows for fine-tuning the output speed to match the specific speed requirements of the application. Continuous adjustment ensures that the desired speed can be precisely achieved, enabling effective speed regulation.
  2. Responsive Control Mechanisms: Variator gearboxes incorporate control mechanisms that respond quickly to speed adjustment inputs. These mechanisms can be mechanical, hydraulic, electronic, or a combination of these. Responsive control systems enable rapid and accurate regulation of the output speed, ensuring precise speed control in real-time.
  3. Wide Speed Range: Variator gearboxes can offer a wide range of achievable speeds, allowing for flexibility in speed regulation. By adjusting the gear ratio or other speed control mechanisms, variator gearboxes can cover a broad range of speed requirements, making them versatile in applications where speed variation is essential.
  4. Stable Speed Maintenance: Variator gearboxes are designed to maintain the selected speed setting with high stability. Once the desired speed is achieved, the gearbox is engineered to minimize speed variations due to external load changes or disturbances. This stability ensures that the output speed remains consistent, contributing to reliable speed regulation.
  5. Feedback and Control Systems: Some variator gearboxes incorporate feedback and control systems that monitor the output speed and adjust the gear ratio or control parameters accordingly. These systems provide closed-loop control, constantly comparing the actual speed with the desired speed, and making adjustments to maintain accurate speed regulation even in the presence of external factors affecting the load or operating conditions.

By incorporating efficient power transmission mechanisms and precise speed regulation features, variator gearboxes can optimize energy transfer and maintain the desired speed levels in a wide range of applications. This enables them to deliver efficient power transmission while offering reliable and adjustable speed regulation.

Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

variator gearbox

What is a variator gearbox and how does it work in mechanical systems?

A variator gearbox, also known as a variable speed transmission, is a type of gearbox that allows for continuous and stepless variation of the output speed within a certain range. It is commonly used in mechanical systems where the output speed needs to be adjusted dynamically without fixed gear ratios. The variator gearbox achieves this by employing specific mechanisms such as belts, chains, or cones.

One common type of variator gearbox is the belt-and-pulley system. It consists of two variable-diameter pulleys connected by a belt. These pulleys can change their effective diameter by adjusting their position. The input pulley is connected to the power source, such as an engine or motor, while the output pulley is connected to the load. By varying the diameters of the pulleys, the speed ratio between the input and output can be continuously adjusted, allowing for a wide range of output speeds.

The variator gearbox works based on the principle of changing the effective radius of the pulleys. When the input pulley diameter increases or the output pulley diameter decreases, the belt is forced to ride higher on the pulley, resulting in a larger effective radius. This causes the output speed to decrease relative to the input speed. Conversely, when the input pulley diameter decreases or the output pulley diameter increases, the belt rides lower on the pulley, leading to a smaller effective radius and an increase in the output speed.

The variator gearbox can be controlled manually or automatically, depending on the application. In manual systems, the adjuvariator gearbox

Can variator gearboxes be customized for specific speed and torque ranges?

Yes, variator gearboxes can be customized to meet specific speed and torque requirements in various applications. Manufacturers offer the flexibility to design and configure variator gearboxes according to the specific needs of customers. Here’s how variator gearboxes can be customized for specific speed and torque ranges:

Variable Pulley Design:

The design of the variable pulley system in a variator gearbox can be customized to achieve desired speed and torque ranges. The shape, size, and configuration of the pulleys can be adjusted to provide different gear ratios and accommodate specific application requirements. By modifying the pulley’s dimensions and angles, variator gearboxes can achieve a wide range of speed ratios and corresponding torque outputs, allowing customization for specific speed and torque ranges.

Selection of Components:

Manufacturers can select and optimize various components within the variator gearbox to match specific speed and torque ranges. This includes the choice of materials for gears, bearings, and other critical components. By selecting appropriate materials, manufacturers can ensure that the variator gearbox can handle the required torque levels without compromising its durability and performance.

Torque-Sensing and Control Systems:

The torque-sensing and control systems within variator gearboxes can be customized to provide precise control over speed and torque. Manufacturers can incorporate sensors and control algorithms that are tailored to the specific speed and torque requirements of an application. These systems monitor the torque load and adjust the gear ratio accordingly to maintain the desired speed and torque output, allowing for customization within specific ranges.

Applications in Parallel or Series:

In some cases, multiple variator gearboxes can be configured in parallel or series to achieve the desired speed and torque ranges. By combining the outputs of multiple variator gearboxes, either in parallel or series arrangement, the overall speed and torque capabilities can be customized to meet specific application requirements. This configuration allows for scalability and adaptability to different speed and torque demands.

Computer-Aided Design (CAD) and Simulation:

Manufacturers utilize computer-aided design (CAD) software and simulations to customize variator gearboxes for specific speed and torque ranges. CAD tools enable the design and optimization of components, ensuring they can withstand the required torque levels and operate within the desired speed ranges. Simulations help manufacturers evaluate the performance of the customized variator gearbox under different operating conditions, allowing for fine-tuning and optimization.

Collaboration with Customers:

Manufacturers work closely with customers to understand their specific speed and torque requirements. By collaborating with customers, manufacturers can gather detailed information about the application’s operational parameters, load profiles, and performance expectations. This collaborative approach ensures that the variator gearbox is customized to precisely match the speed and torque ranges needed for the application.

Through variable pulley design, component selection, torque-sensing and control systems, parallel or series configurations, CAD and simulation tools, and collaboration with customers, variator gearboxes can be customized to deliver specific speed and torque ranges. This customization capability allows variator gearboxes to be tailored to a wide range of industrial applications, ensuring optimal performance and efficiency.

stment of the pulley diameters is done by the operator using mechanical or hydraulic mechanisms. In automatic systems, the adjustment is typically controlled by a computer or an electronic control unit (ECU) based on various parameters such as speed, load, or user inputs.

One of the key advantages of variator gearboxes is the ability to achieve smooth and stepless speed variation. Unlike traditional gearboxes with fixed gear ratios, variator gearboxes offer infinite possibilities for adjusting the output speed. This flexibility is particularly beneficial in applications where precise control of speed is required, such as in vehicles, industrial machinery, and power transmission systems.

However, it’s important to note that variator gearboxes may have limitations in terms of torque capacity and efficiency compared to traditional fixed-ratio gearboxes. The power transmission efficiency of variator gearboxes can vary depending on the specific design and operating conditions.

In summary, a variator gearbox is a type of gearbox that allows for continuous and stepless variation of the output speed. It uses mechanisms such as belts, chains, or cones to adjust the effective diameter of the pulleys, enabling dynamic speed control in mechanical systems.

China wholesaler R Series Helical Gear Reducer Variator De Velocidad Gearbox R107 R137 Planetary Gear Boxes   manufacturer China wholesaler R Series Helical Gear Reducer Variator De Velocidad Gearbox R107 R137 Planetary Gear Boxes   manufacturer
editor by CX 2023-09-04

Variator Gearbox

As one of leading variator gearbox manufacturers, suppliers and exporters of products, We offer variator gearbox and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of variator gearbox

Recent Posts